УДК 621.542

С.Н. Хрунков, А.А. Крайнов

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ВЛИЯНИЯ СТЕПЕНИ ПАРЦИАЛЬНОСТИ ЦЕНТРОСТРЕМИТЕЛЬНОЙ СТУПЕНИ НА КОМПЛЕКСНУЮ ЭФФЕКТИВНОСТЬ МАЛОРАЗМЕРНОГО ДВУХСТУПЕНЧАТОГО ПНЕВМАТИЧЕСКОГО ТУРБИННОГО ПРИВОДА

Нижегородский государственный технический университет им. Р.Е. Алексеева

Исследуются особенности работы двухступенчатого малоразмерного пневматического турбинного привода с учетом влияния вентиляционных потерь второй ступени. Описаны результаты экспериментов с конфигурациями центростремительной ступени. Представлены выводы.

Ключевые слова: пневматический привод, турбинный привод, струйно-реактивная турбина, Сегнерово колесо, воздушная турбина, малоразмерная турбина.

С целью создания современного конкурентоспособного пневматического инструмента в НГТУ на кафедре «Энергетические установки и тепловые двигатели» были спроектирован и создан модельный ряд экспериментальных образцов ручных шлифовальных машин. Их главной особенностью является инновационный двухступенчатый турбинный привод, состоящий из ступени давления и ступени скорости [1]. В качестве ступени давления выступает радиальная струйно-реактивная турбина (СРТ), в качестве ступени скорости – радиальная центростремительная турбина (ЦС) [2]. Обе ступени выполнены на едином диске рабочего колеса привода, что является преимуществом с точки зрения технологии изготовления и компактности конструкции. Основными преимуществами данного привода являются более высокий пусковой момент, эффективные, скоростные и экономические показатели, а так же возможность обеспечить практически любое сочетание мощности и частоты вращения [3].

Общая схема привода представлена на рис. 1.

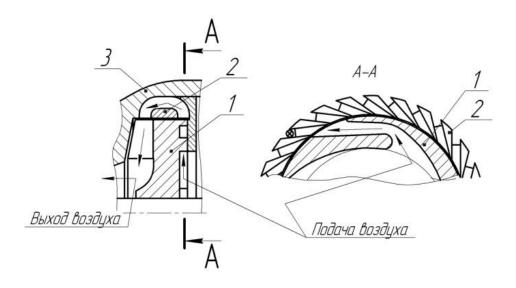


Рис. 1. Общая схема привода

Транспортные системы №2(5), 2017

Подвод рабочего тела (сжатого воздуха) к первой ступени рабочего колеса (поз.1) осуществляется радиально от центра ротора. В неподвижном промежуточном направляющем аппарате (поз. 2) поток разворачивается на 180 градусов и попадает на решетку второй ступени привода [4]. Таким образом, происходят два последовательных преобразования энергии: потенциальная энергия давления переходит в кинетическую при прохождении через струйно-реактивной сопла турбины суживающе-расширяющиеся механической работы, а затем часть оставшейся кинетической энергии потока преобразуется в механическую энергию в центростремительной ступени [5]. Компоновка первой ступени при габаритном диаметре рабочего колеса 50 мм может содержать в себе от одного до шести количество струйно-реактивных сопел. Это максимальное сопел, обеспечивается наименьший угол выхода потока из сопла. С учетом принятой густоты решетки, профиля лопатки центростремительной ступени, расчетное количество лопаток второй центростремительной ступени составляет 17 единиц. Таким образом, подвод рабочего тела на вторую ступень обеспечен только по части окружности и в работе участвуют не все лопатки ступени. Лопатки, которые не участвуют в преобразовании энергии, увеличивают потери на трение и вентиляцию, что предполагает снижение коэффициента полезного действия (КПД) привода.

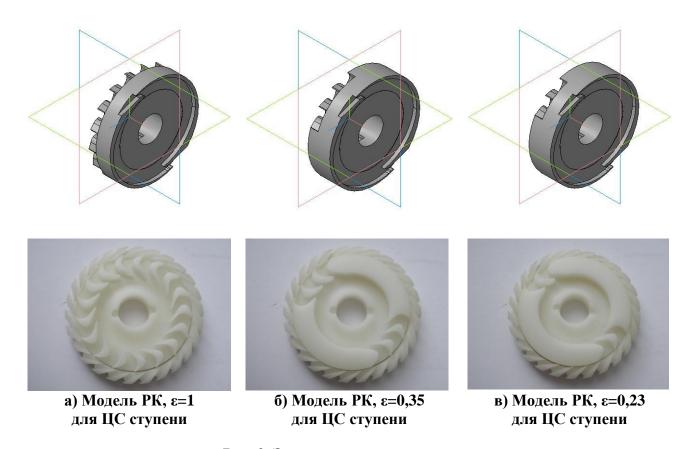


Рис. 2. Экспериментальные колеса

С целью изучения степени влияния вентиляционных потерь на КПД привода были изготовлены методом 3D печати три экспериментальных рабочих колеса. Каждое из них содержит в качестве первой ступени 2 сопла СРТ с идентичными геометрическими параметрами. Вторая ступень выполнена в следующих вариантах:

- с полным облопачиванием ЦС ступени, степень парциальности ε=1;
- с частичным облопачиванием при условии, что на каждое сопло СРТ приходится 3 ЦС

Транспортные системы №2(5), 2017

межлопаточных канала. Таким образом ЦС ступень имеет 2 активных сектора, составляющих в сумме 124,28°. При этом степень парциальности ε=0,35;

• с частичным облопачиванием при условии, что на каждое сопло СРТ приходится 2 ЦС межлопаточных канала. ЦС ступень имеет 2 активных сектора, составляющих в сумме $81,92^{\circ}$. При этом степень парциальности ε =0,23.

Отсутствие лопаток можно обеспечить двумя способами: изготовить колесо с полностью отсутствующими лопатками, при этом велика вероятность потерь, связанных с завихрениями потока в пустых полостях деталей привода; изготовить колесо со сплошным телом на месте отсутствующих лопаток, при этом между деталями привода не образуется пустых полостей, за исключением радиальных зазоров между подвижными и неподвижными деталями. Таким образом были спроектированы и изготовлены экспериментальные колеса с сплошным телом вместо отсутствующих лопаток в соответствии с рисунком 2.

Основные характеристики экспериментальных колес определялись при помощи стенда для испытаний малоразмерных турбин. Схема с основными конструктивными элементами стенда показана на рисунке 3 [6].

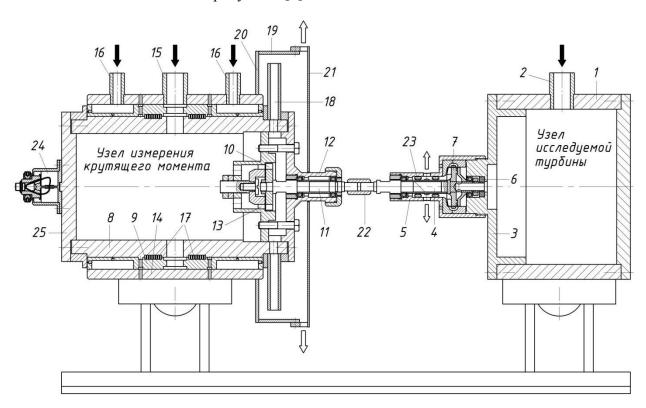


Рис. 3. Устройство для проведения измерений:

1 — ресивер исследуемой турбины; 2 — патрубок подвода воздуха к исследуемой турбине; 3 — фланец; 4 — вал исследуемой турбины; 5 — корпус ротора исследуемой турбины;

6 — уплотнительная втулка; 7 — исследуемое рабочее колесо турбины; 8 — ресивер узла измерения крутящего момента; 9 — втулка газостатического подшипника; 10 — рабочее колесо нагрузочной турбины; 11 —вал нагрузочной турбины; 12 — корпус ротора нагрузочной турбины; 13 — сопловой аппарат нагрузочной турбины;

14 – неподвижная обечайка; 15 – патрубок подвода воздуха к нагрузочной турбине;

16 — патрубки подвода воздуха к газостатическому подшипнику; 17 — лабиринтовые уплотнения; 18 — раскручивающее устройство; 19 — радиальный экран; 20, 21 — торцевые экраны; 22 — муфта;23 — выхлопные отверстия; 24 — тензометрический датчик момента; 25 — задняя крышка

Данный стенд позволяет определять крутящий момент, развиваемый РК на диапазоне частот вращения от 0 до 50000 мин⁻¹. В качестве опоры узла измерения крутящего момента используется газостатический подшипник, что обеспечивает высокую точность показаний.

На рис. 4 представлены графики зависимостей крутящего момента M, H*м и мощности N, Вт от частоты вращения ротора (рис.4, a и δ), а так же зависимости КПД РК от параметра отношения скоростей U/C₀ (рис.4, e), где U – окружная скорость потока воздуха на выходе из каналов струйно-реактивной турбины, C₀ – теоретическая скорость истечения воздуха, рассчитанная по располагаемому теплоперепаду.

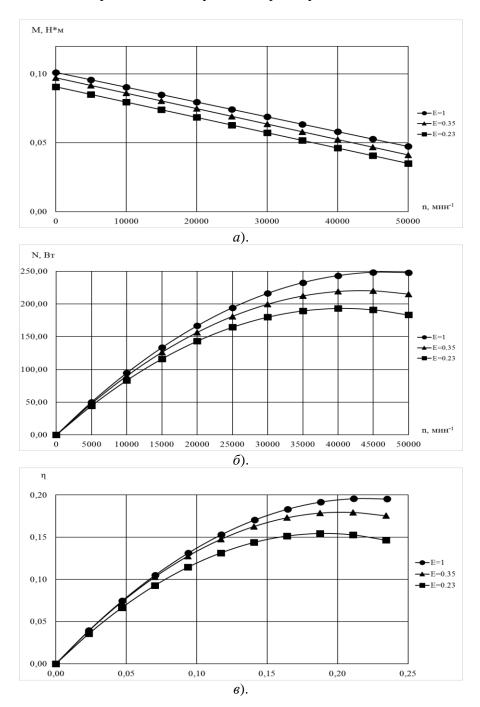


Рис. 4. Результаты испытаний

Анализируя результаты, можно сделать следующие выводы.

Так как РК с степенью парциальности ЦС ступени є=1 показало наибольшую эффективность, предполагаемые потери от трения и вентиляции не достаточно выражены или не оказывают особого влияния на комплексную эффективность привода. Снижение КПД РК с парциальными ЦС ступенями, на наш взгляд, обусловлено недостаточным смещением ЦС каналов относительно СРТ сопел в сторону движения потока. Таким образом часть потока, пройдя неподвижный направляющий аппарат поступает в ЦС ступень, а часть ударяется в тело неактивной дуги ЦС ступени, существенно снижая при этом коэффициент полезного действия турбинного привода. При этом, чем меньшее количество ЦС каналов выполнено в расчете на одно СРТ сопло, тем большая вероятность того, что поток столкнется с телом неактивной дуги, что наглядно подтвердили результаты экспериментов.

По результатам проведенных экспериментов выявлены новые направления для дальнейших исследований по определению потерь на трение и вентиляцию, в том числе потерь, связанных с траекторией движения потока.

Библиографический список

- 1. Крайнов, А.А. Радиальная двухступенчатая микротурбина для пневматического привода [Текст] / Кузнецов Ю.П., Химич В.Л., Хрунков С.Н., Крайнов А.А. // Известия высших учебных заведений. Авиационная техника. 2016. № 2. С. 119-122.
- 2. Крайнов, А.А. Квазиэксергетический анализ пневматического микротурбинного привода ручных шлифовальных машин [Текст] / Хрунков С.Н., Крайнов А.А., Жуков А.Е. // Современные проблемы науки и образования. 2015. № 1-1. С. 223.
- 3. Крайнов, А.А. Ручная пневматическая шлифовальная машина с инновационным типом привода для судостроения и судоремонта [Текст] / Хрунков С.Н., Крайнов А.А. // В сборнике: IV Международный Балтийский Морской Форум: материалы Международного морского форума. Калининград, 2016. С. 214-220.
- 4. Крайнов, А.А. Основные подходы к разработке концепции проектирования струйнореактивной турбины для привода ручного шлифовального инструмента [Текст] / А.А. Крайнов, С.Н.Хрунков, В.Л. Химич// Материалы Международной молодежной научной конференции «XXII Туполевские чтения (школа молодых ученых)». – Казань, 2015.
- 5. Khrunkov, S.N. The influence of aerodynamic characteristics of the elements of the flow range of the radial two-row range of the radial two-row microturbine on its dynamic characteristics / Khimich V.L., Chuvakov A.B., Khrunkov S.N., Kraynov A.A. // International Journal of Applied Engineering Research. 2016. T. 11. № 23. pp. 11501-11509.
- 6. Химич, В.Л. Экспериментальный стенд для исследования микротурбин и шлифовальных машин с турбинным приводом [Текст] / В.Л. Химич, Ю.П. Кузнецов, А.Г. Воеводин и др. // В сборнике: Всероссийской научно-практической конференции «Современные технологии в кораблестроительном и авиационном образовании, науке и производстве». Нижний Новгород, 2016.