УДК 629.572

А.А. Болотин РАСЧЕТНЫЕ ИССЛЕДОВАНИЯ УПРАВЛЯЕМОСТИ СУДОВ НА ПОДВОДНЫХ КРЫЛЬЯХ

Нижегородский государственный технический университет им. Р.Е. Алексеева

Применение математического моделирования является в настоящее время необходимым условием успешного проектирования судов на подводных крыльях. Представлено описание методики управляемости судов на подводных крыльях, приведены результаты расчетов.

Ключевые слова: судно на подводных крыльях, гидродинамические характеристики, динамика движения, управляемость, циркуляция, СПК «Полесье».

Введение

Период активного развития судов на подводных крыльях (СПК) приходится на 60–80-е годы прошлого столетия. Методы оценки гидродинамических сил и динамики движения в то время имели в основе экспериментальные исследования. В наши дни методы математического моделирования позволяют существенно расширить и упростить методику исследования движения судов. В данной работе представлен метод оценки управляемости судна на подводных крыльях и выполнены расчеты для СПК «Полесье».

Методика расчета

Для оценки управляемости СПК «Полесье» при движении в крыльевом режиме воспользуемся уравнениями движения судна в боковой плоскости. В боковом движении СПК имеет три степени свободы: поперечные поступательные перемещения вдоль оси Z и два вращательных движения вдоль оси X и Y (ось X направлена вдоль скорости движения, ось Y – вверх, ось Z – вправо). Вращательное движение рассмотрим в системе осей координат связанных с главными центральными осями инерции. Полагая углы дифферента малыми, уравнения можно представить в следующем виде:

$$mV(\dot{\beta} - \omega_{y}) = \frac{\rho V^{2}}{2} S(C_{z}^{\beta}\beta + C_{y}\gamma) + R_{zBO3M};$$

$$J_{x}\dot{\omega}_{x} = \frac{\rho V^{2}}{2} SL(m_{x}^{\beta}\beta + m_{x}^{\gamma}\gamma + m_{x}^{\overline{\omega}_{x}}\overline{\omega}_{x} + m_{x}^{\overline{\omega}_{y}}\overline{\omega}_{y}) + M_{xBO3M};$$

$$J_{y}\dot{\omega}_{y} = \frac{\rho V^{2}}{2} SL(m_{y}^{\beta}\beta + m_{y}^{\gamma}\gamma + m_{y}^{\overline{\omega}_{x}}\overline{\omega}_{x} + m_{y}^{\overline{\omega}_{y}}\overline{\omega}_{y}) + M_{yBO3M},$$
(1)

где J_x и J_y – моменты инерции относительно соответствующих осей; $\overline{\omega}_x = \frac{\omega_x L}{2V}$ и $\overline{\omega}_y = \frac{\omega_y L}{2V}$ – безразмерные угловые скорости; $C_z^{\beta}, m_x^{\beta}, m_y^{\beta}$ – производные аэродинамических коэффициентов всей крыльевой системы по углу дрейфа; $m_x^{\gamma}, m_y^{\gamma}$ – производные аэродинамических коэффициентов всей крыльевой системы по углу крена; $m_x^{\overline{\omega}_x}, m_y^{\overline{\omega}_y}$ –

производные аэродинамических коэффициентов всей крыльевой системы по безразмерной угловой скорости крена; $m_x^{\overline{\omega}_y}, m_y^{\overline{\omega}_y}$ – производные аэродинамических коэффициентов всей крыльевой системы по безразмерной угловой скорости курса.

В качестве характерного линейного размера L принято значение $L=(L_1+L_2)/2$, где L_1 – размах носового крыла, L_1 – размах кормового крыла. В качестве характерной площади S принята суммарная площадь крыльев.

Производные аэродинамических коэффициентов для всей крыльевой системы определяются следующим образом:

$$\begin{split} C_{z}^{\beta} &= (C_{z1}^{\beta}S_{1} + C_{z2}^{\beta}S_{2})/S \cdot 57,3; \\ m_{x}^{\beta} &= (m_{x1}^{\beta}S_{1}L_{1} + m_{x2}^{\beta}S_{2}L_{2})/S/L \cdot 57,3; \\ m_{y}^{\beta} &= (C_{z1}^{\beta}S_{1}x_{1} + C_{z2}^{\beta}S_{2}x_{2})/S/L; \\ m_{x}^{\gamma} &= (m_{x1}^{\gamma}S_{1}L_{1} + m_{x2}^{\gamma}S_{2}L_{2})/S/L \cdot 57,3; \\ m_{y}^{\gamma} &= 0; \\ m_{x}^{\overline{\omega}_{x}} &= -(114,6 \cdot C_{y_{1}}^{\alpha}S_{1}z^{2}_{1} + C_{z1}^{\beta}S_{1}y^{2}_{1} + 114,6 \cdot C_{y_{2}}^{\alpha}S_{2}z^{2}_{2} + C_{z2}^{\beta}S_{2}y^{2}_{2})/S/L^{2}; \\ m_{x}^{\overline{\omega}_{y}} &= 0; \\ m_{y}^{\overline{\omega}_{y}} &= 0; \\ m_{y}^{\overline{\omega}_{y}} &= 0; \\ m_{y}^{\overline{\omega}_{y}} &= (C_{z1}^{\beta}S_{1}x^{2}_{1} + C_{z2}^{\beta}S_{2}x^{2}_{2})/S/L^{2}. \end{split}$$

Здесь индекс *1* соответствует носовому крылу, индекс 2 – кормовому; x_1 – отстояние от центра тяжести до точки приложения боковой силы на носовом крыльевом устройстве; x_2 – отстояние от центра тяжести до точки приложения боковой силы на кормовом крыльевом устройстве; z_1, z_2 – расстояние от ДП до точки приложения подъемной силы на половине крыла; y_1, y_2 – расстояние от центра тяжести до точки приложения боковой силы вдоль оси *OY*.

Возмущающие силы и моменты $R_{z_{BO3M}}, M_{x_{BO3M}}, M_{y_{BO3M}}$ обусловлены отклонением руля направления и представлены следующим образом:

$$R_{zBO3M} = \frac{\rho V^2}{2} S C_z^{\delta H} \delta_H;$$

$$M_{xBO3M} = \frac{\rho V^2}{2} S L m_x^{\delta H} \delta_H;$$

$$M_{yBO3M} = \frac{\rho V^2}{2} S C_z^{\delta H} \delta_H x_2.$$

Исходные данные

Для СПК «Полесье» производные сил и моментов по параметрам движения и по углу отклонения руля направления для носового и кормового крыльевых устройств приняты согласно [1] и представлены в табл. 1 и 2. Результаты расчета гидродинамических характеристик всей крыльевой системы представлены в табл. 3. При этом, если гидродинамические характеристики изолированных крыльев зависят только от погружения крыла ($\bar{h} = h/b$, где b – хорда крыла), то характеристики системы крыльев зависят и от погружения и от дифферента Ψ . В качестве погружения H (м) принято отстояние точки, расположенной на линии, соединяющей крылья и расположенной под центром тяжести от поверхности воды.

Представленная система уравнений позволяет оценить управляемость СПК по следующим критериям:

• производным статической управляемости;

• параметрам бокового возмущенного движения при перекладке руля направления.

Таблица 1

Гидродинамические и геометрические характеристики носового крыла

$\overline{h_1}$	C^{α}_{z1}	C_{z1}^{β}	m_{x1}^{β}	m_{x1}^{γ}	$S_{1,M}^2$	<i>L</i> _{1,} м	<i>х</i> ₁ ,м
0,2	0,043	-0,00078	-0,00072	-0,0029	3,47	4,76	7,26
0,4	0,049	-0,00262	-0,00012	-0,0030			
0,6	0,055	-0,00594	0,00044	-0,006			

Таблица 2

Гидродинамические и геометрические характеристики кормового крыла

$\overline{h_1}$	$C^{\alpha}_{y_2}$	C_{z2}^{β}	m_{x2}^{β}	m_{x2}^{γ}	$C_z^{\delta { m H}}$	$m_x^{\delta_{ m H}}$	S_{2}, M^{2}	<i>L</i> ₂ ,м	<i>х</i> ₂ ,м
0,2	0,02	-0,0009	0,0006	-0,0022	-0,078	-0,0005	2,86	3,3	7,21
0,4	0,037	-0,0026	0,00014	-0,0007	-0,062	-0,0020			
0,6	0,045	-0,0055	0,00013	-0,0003	-0,059	-0,0044			

Таблица 3 Гидродинамические и характеристики крыльевой системы

<i>Н</i> , м	0,20			0,25			0,30		
Ψ,°	0,8	1,0	1,2	0,8	1,0	1,2	0,8	1,0	1,2
Су	0,167	0,175	0,183	0,181	0,189	0,196	0,192	0,199	0,206
C_z^{β}	-0,073	-0,080	-0,089	-0,097	-0,102	-0,110	-0,129	-0,133	-0,139
m_x^{β}	-0,035	-0,039	-0,044	-0,028	-0,032	-0,037	-0,021	-0,025	-0,028
m_y^{eta}	-0,084	-0,101	-0,117	-0,103	-0,127	-0,151	-0,116	-0,148	-0,179
m_x^{γ}	-0,273	-0,339	-0,413	-0,158	-0,207	-0,266	-0,077	-0,111	-0,153
$m_x^{\overline{\omega}_x}$	-1,203	-1,202	-1,201	-1,265	-1,264	-1,263	-1,313	-1,312	-1,311
$m_y^{\overline{w}_y}$	-0,469	-0,514	-0,573	-0,623	-0,658	-0,707	-0,828	-0,854	-0,893
$C_z^{\delta_{\mathrm{H}}}$	-0,045	-0,052	-0,060	-0,060	-0,068	-0,077	-0,077	-0,086	-0,095
$m_x^{\delta_{\mathrm{H}}}$	0,015	0,017	0,020	0,020	0,022	0,025	0,025	0,028	0,031
$m_y^{\delta H}$	-0,081	-0,094	-0,107	-0,107	-0,122	-0,137	-0,137	-0,153	-0,170

Расчет производных статической управляемости

Рассмотрим криволинейное установившееся движение (установившийся разворот) с постоянными углами крена и дрейфа и отклоненным рулем направления. В этом случае

$$\dot{\beta} = \dot{\gamma} = \omega_{x} = 0; \quad \omega_{y} - \text{const.}$$

Приведя уравнения к безразмерному виду, получаем:

$$-(m_x^{\gamma}-m_x^{\overline{\omega}_y}\frac{C_Y}{2\mu})\gamma-m_x^{\beta}\beta=m_x^{\delta_{\rm H}}\delta_{_{\rm H}};$$
$$-(m_y^{\gamma}-m_y^{\overline{\omega}_y}\frac{C_Y}{2\mu})\gamma-m_y^{\beta}\beta=m_y^{\delta_{\rm H}}\delta_{_{\rm H}},$$

где $\mu = \frac{2m}{\rho SL}$ – относительная плотность.

Решая данную систему уравнений, получаем зависимость установившихся значений дрейфа β_{yct} и крена γ_{yct} от угла отклонения руля направления.

$$\gamma_{ycr} = \frac{m_x^{\delta_H} m_y^{\beta} - m_y^{\delta_H} m_x^{\beta}}{(m_x^{\gamma} m_y^{\beta} - m_x^{\beta} m_y^{\gamma}) + \frac{C_y}{2\mu} (m_x^{\beta} m_y^{\overline{\omega}_y} - m_x^{\overline{\omega}_y} m_y^{\beta})} \delta_{\rm H};$$

$$\beta_{ycr} = \frac{(-m_x^{\delta_H} m_y^{\gamma} + m_y^{\delta_H} m_x^{\gamma}) + \frac{C_y}{2\mu} (m_x^{\delta_H} m_y^{\overline{\omega}_y} - m_x^{\overline{\omega}_y} m_y^{\delta_H})}{(m_x^{\gamma} m_y^{\beta} - m_x^{\beta} m_y^{\gamma}) + \frac{C_y}{2\mu} (m_x^{\beta} m_y^{\overline{\omega}_y} - m_x^{\overline{\omega}_y} m_y^{\beta})} \delta_{\rm H};$$

$$\omega_{y_{ycr}} = -\frac{\rho SV}{2m} (C_z^{\beta} \beta_{ycr} + C_y \gamma_{ycr}).$$

Учитывая линейный характер зависимости параметров установившегося бокового движения от угла отклонения руля направления, оценить управляемость можно с помощью производных: $\frac{d\beta}{d\delta_{\rm H}}, \frac{d\gamma}{d\delta_{\rm H}}, \frac{d\omega_{_{\rm y}}}{d\delta_{_{\rm H}}}.$

Результаты расчета производных статической управляемости для варианта нагрузки соответствующему судну в полном грузу, с полной нормой запасов и топлива, с полным количеством пассажиров и багажа, для скоростей движения 64 км/ч, 69 км/ч и представлены в табл. 4. Погружение крыльев и дифферент судна определялись по методике, предложенной в [2].

Таблица 4 Производные статической управляемости

Скорость	$rac{deta}{d\delta_{ m H}}$	$rac{d\gamma}{d\delta_{ m H}}$	$rac{d \omega_y}{d \delta_{ m H}}$	
64 км/ч	-0,3580	0,2948	-0,2828	
69 км/ч	-0,3219	0,2151	-0,2022	

По данным результатам можно определить параметры установившегося разворота при любой перекладке руля. В частности, при отклонении руля на максимальный угол 35° угол дрейфа крена составит 12,3° при скорости 64 км/ч и 11,2° при скорости 69 км/ч. Угол крена соответственно составит 10,1° и 7,3°, угловая скорость – 9,9 °/сек и 7,1 °/сек. Несложно определить, что диаметр циркуляции при скорости 69 км/ч составит 308 м. Ухудшение характеристик остойчивости при меньшей скорости связано с тем, что движение происходит углом дифферента и при большем погружении кормового большим крыла. Восстанавливающий момент крена m_x^{γ} кормового крыла с увеличением его погружения заметно уменьшается. Необходимо отметить, что задача решается в постановке, когда скорость движения в процессе циркуляции постоянна.

Расчет параметров бокового возмущенного движения

Для иллюстрации процесса движения СПК «Полесье» на циркуляции в крыльевом режиме проведено математическое моделирование динамики движения судна при перекладке руля направления на постоянный угол. Моделирование проведено путем интегрирования системы уравнений (1) для случая нагрузки судна в полном грузу, с полной нормой запасов и топлива, с полным количеством пассажиров и багажа, и при посадке соответствующей скорости 69 км/ч. Рассмотрены два случая перекладки руля: на максимальный угол $\delta_{\rm H}$ =35° и на угол $\delta_{\rm H}$ =15°.

Рис. 1. Изменение параметров движения при перекладке руля на 35°

Рис. 2. Изменение параметров движения при перекладке руля на 15°

Для обоих случаев перекладка начиналась на первой секунде движения и осуществлялась равномерно в течение трех секунд. Результаты расчета представлены на рис. 1 и 2, а именно показано изменение во времени следующих параметров движения: угла дрейфа β , угла крена γ , угловой скорости ω_y , угловой скорости ω_x и угла курса φ . В отличие от производных статической управляемости, данные результаты позволяют исследовать переходные процессы при входе в циркуляцию, оценить динамические забросы кинематических параметров, время входа в установившийся разворот.

Результаты, представленные на рис. 1, свидетельствуют, что перекладка руля на максимальный угол при движении в крыльевом режиме приводит к достаточно большим динамическим забросам по крену и дрейфу, которые создадут заметный дискомфорт для пассажиров. Установившиеся значения углов крена и дрейфа достаточно велики, что должно привести к потере скорости на циркуляции и сходу с крыльевого режима. В рамках данного расчета скорость считается постоянной. Перекладка руля на 15° (рис. 2) дает значения параметров движения обеспечивающих более комфортную и устойчивую циркуляцию. Диаметр циркуляции при этом увеличивается до 732 м.

Выводы

- 1. Представлена методика, позволяющая оценить управляемость судов на подводных крыльях. Данная методика, является частью комплекса расчетных методов, позволяющих определять эксплуатационные характеристики СПК, на различных стадиях проектирования.
- 2. Проведены расчетные исследования по оценке управляемости и динамики движения на циркуляции для СПК «Полесье».

Библиографический список

- 1. Болотин, А.А. Применение метода дискретных вихрей для исследования подводных крыльев [Текст] // Труды НГТУ им Р.Е. Алексеева. 2015. №3(110). С. 209-213.
- 2. Болотин, А.А. Методика расчета кривой сопротивления и посадки судна на подводных крыльях [Текст] // Проблемы прочности и пластичности. 2014. Т. 76. №2. С. 172-177.